This algorithm is nice because it's scalable (can easily set the number of layers, and number of neurons per layer, to be any size). The listing is below; here the network is just learning an XOR logic. Since I built this from the ground up, it shouldn't be too hard to hook the program up to the genetic-circuit transfer function predictor I wrote this summer, and use it to optimize the predictor's input parameters for a particular target. I need to translate the predictor's Matlab script into C++, as well, and bundle that with my implementation of the Runge-Kutta ODE solver, which should be fairly straightforward.
/*********************************************************************
* neuralnet.cpp *
* Logistic function neural network (compile with Mersenne-Twister *
* random number generator: mtrand.cpp) *
* (c) Pericles v. 2.0, 9/9/2008 *
*********************************************************************/
#include <iostream>
#include <cmath>
#include <vector>
#include "mtrand.h"
using namespace std;
const int MAX_CYCLES = 100000;
const int NUMBER_OF_LAYERS = 3;
const int NEURONS_PER_LAYER = 4;
const double GOAL[4] = {0.0, 1.0, 1.0, 0.0};
double INPUT_LIST[4][2] = {{0.0, 0.0},
{1.0, 0.0},
{0.0, 1.0},
{1.0, 1.0}};
// Seed random number generator with system time
MTRand_open mt((unsigned)time(0));
class Neuron
{
private:
vector<vector<double> > input;
double * output, * grad, * weight;
double lRate;
int numInputs, numSets, layer;
public:
Neuron() { }
// Empty constructor: use initializer for neuron construction
void initialize(int L, int N, double R)
{
layer = L;
numInputs = N + 1;
numSets = 4;
lRate = R;
// Initialize a numSets x numInputs vector of zeros for input
vector<double> numPerSet(numInputs);
output = new double[numSets];
grad = new double[numSets];
for(int i = 0; i < numSets; i++)
{
output[i] = 0.0;
grad[i] = 0.0;
input.push_back(numPerSet);
// Insert static threshold (bias) of -1.0
input[i][numInputs - 1] = -1.0;
}
// Initialize weight to random values on (-1, 1)
weight = new double[numInputs];
cout << "++ Layer " << layer << " neuron: [ ";
for(int i = 0; i < numInputs; i++)
{
weight[i] = (2 * (mt() - 0.5));
cout << weight[i] << " ";
}
cout << "] ++\n";
}
void forward(int);
void updateDeltas(int);
void updateWeights(int);
double sigmoid(double x) { return 1.0 / (1.0 + exp(-x)); }
// Functions to access and return member data
int getNumInputs() { return numInputs; }
int getNumSets() { return numSets; }
double getOutput(int i) { return output[i]; }
double getGrad(int i) { return grad[i]; }
double getWeight(int i) { return weight[i]; }
};
///////////////// Network declaration and sizing /////////////////
vector<Neuron> layers(NUMBER_OF_LAYERS);
vector<vector<Neuron> > network(NEURONS_PER_LAYER + 1, layers);
//////////////////////////////////////////////////////////////////
void Neuron::forward(int inputSet)
{
switch(layer)
{
case 0:
{
double (* pTemp)[2];
pTemp = INPUT_LIST;
for(int i = 0; i < numInputs - 1; i++)
input[inputSet][i] = pTemp[inputSet][i];
break;
}
default:
{
// Use the previous layer's output as this layer's input
for(int i = 0; i < numInputs - 1; i++)
input[inputSet][i] = network[i][layer - 1].getOutput(inputSet);
break;
}
}
// Calculate the neuron's output from the weighted inputs
double product = 0.0;
for(int i = 0; i < numInputs; i++)
product += weight[i] * input[inputSet][i];
output[inputSet] = sigmoid(product);
}
void Neuron::updateDeltas(int inputSet)
{
double error;
switch(layer)
{
case NUMBER_OF_LAYERS - 1:
{
// Calculate how far off the output is from the goal, and
// adjust the hidden-to-output weights
error = GOAL[inputSet] - output[inputSet];
grad[inputSet] = error * output[inputSet] * (1 - output[inputSet]);
break;
}
default:
{
// Backpropagate the error and adjust the previous-to-current
// layer weights based on the gradients of the next layer
error = 0.0;
for(int i = 0; i < network[0][layer + 1].getNumInputs(); i++)
error += network[i][layer + 1].getWeight(i) * network[i][layer + 1].getGrad(inputSet);
grad[inputSet] = error * output[inputSet] * (1 - output[inputSet]);
break;
}
}
}
void Neuron::updateWeights(int inputSet)
{
for(int i = 0; i < numInputs; i++)
weight[i] += lRate * grad[inputSet] * input[inputSet][i];
}
bool complete()
{
// Check if the network output is sufficiently close to the goal
for(int i = 0; i < 4; i++)
{
if(fabs(GOAL[i] - network[0][NUMBER_OF_LAYERS - 1].getOutput(i)) > 0.01)
return false;
}
return true;
}
int main()
{
bool result = false;
// Initialize the network
for(int i = 0; i < NUMBER_OF_LAYERS; i++)
{
for(int j = 0; j <= NEURONS_PER_LAYER; j++)
network[j][i].initialize(i, NEURONS_PER_LAYER, 0.25);
}
cout << "\n";
// Train the network
cout << "Goal: [ ";
for(int j = 0; j < 4; j++)
cout << GOAL[j] << " ";
cout << "]\nLayer " << NUMBER_OF_LAYERS - 1 << " output:\n";
for(int i = 0; i < MAX_CYCLES; i++)
{
// Forward pass: layer 0 -> (NUMBER_OF_LAYERS - 1)
for(int j = 0; j < 4; j++)
{
for(int l = 0; l < NUMBER_OF_LAYERS; l++)
{
for(int m = 0; m <= NEURONS_PER_LAYER; m++)
network[m][l].forward(j);
}
}
// Reverse pass: layer (NUMBER_OF_LAYERS - 1) -> 0
for(int j = 0; j < 4; j++)
{
for(int l = NUMBER_OF_LAYERS - 1; l >= 0; l--)
{
for(int m = NEURONS_PER_LAYER; m >= 0; m--)
network[m][l].updateDeltas(j);
}
}
for(int j = 0; j < 4; j++)
{
for(int l = NUMBER_OF_LAYERS - 1; l >= 0; l--)
{
for(int m = NEURONS_PER_LAYER; m >= 0; m--)
network[m][l].updateWeights(j);
}
}
// Display the network's output, and check if it is complete
cout << "[ ";
for(int j = 0; j < 4; j++)
cout << network[0][NUMBER_OF_LAYERS - 1].getOutput(j) << " ";
result = complete();
cout << "]\n";
if(result)
{
cout << "\n**** Training successful after " << i << " cycles! ****\n";
i = MAX_CYCLES;
}
}
if(!result)
cout << "\n**** Training failed. ****\n";
cout << "Goal: [ ";
for(int j = 0; j < 4; j++)
cout << GOAL[j] << " ";
cout << "]\n";
cout << "Final network weights:\n";
for(int j = 0; j < NUMBER_OF_LAYERS; j++)
{
for(int k = 0; k < NEURONS_PER_LAYER; k++)
{
cout << "Layer " << j << ": [ ";
for(int l = 0; l < network[k][j].getNumInputs(); l++)
cout << network[k][j].getWeight(l) << " ";
cout << "]\n";
}
}
cout << "\n";
return 0;
}
No comments:
Post a Comment